A posteriori error estimation and adaptivity for elliptic optimal control problems with state constraints
نویسندگان
چکیده
In this paper optimal control problems governed by elliptic semilinear equations and subject to pointwise state constraints are considered. These problems are discretized using finite element methods and a posteriori error estimates are derived assessing the error with respect to the cost functional. These estimates are used to obtain quantitative information on the discretization error as well as for guiding an adaptive algorithm for local mesh refinement. Numerical examples illustrate the behavior of the method.
منابع مشابه
An Introduction to the A Posteriori Error Analysis of Elliptic Optimal Control Problems
We aim at a survey on adaptive finite element methods for optimal control problems associated with second order elliptic boundary value problems. Both unconstrained and constrained problems will be considered, the latter in case of pointwise control and pointwise state constraints. Mesh adaptivity is realized in terms of a posteriori error estimators obtained by using residual-type error contro...
متن کاملEquivalent a posteriori error estimates for spectral element solutions of constrained optimal control problem in one dimension
In this paper, we study spectral element approximation for a constrained optimal control problem in one dimension. The equivalent a posteriori error estimators are derived for the control, the state and the adjoint state approximation. Such estimators can be used to construct adaptive spectral elements for the control problems.
متن کاملA posteriori error estimation of finite element approximations of pointwise state constrained distributed control problems
We provide an a posteriori error analysis of finite element approximations of pointwise state constrained distributed optimal control problems for second order elliptic boundary value problems. In particular, we derive a residual-type a posteriori error estimator and prove its efficiency and reliability up to oscillations in the data of the problem and a consistency error term. In contrast to t...
متن کاملA Posteriori Error Estimates for Semilinear Boundary Control Problems
In this paper we study the finite element approximation for boundary control problems governed by semilinear elliptic equations. Optimal control problems are very important model in science and engineering numerical simulation. They have various physical backgrounds in many practical applications. Finite element approximation of optimal control problems plays a very important role in the numeri...
متن کاملA RESIDUAL–BASED POSTERIORI ERROR ESTIMATES FOR hp FINITE ELEMENT SOLUTIONS OF GENERAL BILINEAR OPTIMAL CONTROL PROBLEMS
In this paper, we investigate a residual-based posteriori error estimates for the hp finite element approximation of general optimal control problems governed by bilinear elliptic equations. By using the hp discontinuous Galerkin finite element approximation for the control and the hp finite element approximation for both the state and the co-state, we derive a posteriori upper error bounds for...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Comp. Opt. and Appl.
دوره 44 شماره
صفحات -
تاریخ انتشار 2009